
Crafting an  
Error Handling Strategy

20241216



00.  About this Workshop 

01.  Error Handling Concepts


02.  Throwing and Handling Exceptions


03.  Timeouts


04.  Retry Policies


05.  Recovering from Failure


06.  Conclusion

Crafting an Error Handling Strategy



Logistics
• Introductions 

• Schedule 

• Facilities 

• WiFi 

• Asking questions and providing feedback 

• Course conventions: “Activity” vs “activity” 

• Prerequisites: Temporal 101, 102

We welcome  
your feedback

t.mp/replay25ws

Network: Replay2025
Password: Durable!



During this course, you will
• Recommend an error handling strategy


• Explain how Temporal represents errors

• Compare platform errors to application errors

• Explain differences between timeouts and failures

• Determine when it is appropriate to fail a Workflow Execution and when to fail an Activity Execution


• Implement an error handling strategy

• Explain how Temporal handles retries

• Apply a custom Retry Policy to Workflow and Activity Execution

• Customize a Retry Policy for execution of a specific Activity

• Determine when an error should be retried or deemed non-retryable

• Define specific errors as non-retryable error types


• Integrate appropriate mechanisms for handling various types of errors

• Implement Activity Heartbeating to detect failure in a long running Activity

• Track Activity Execution progress using Heartbeat messages

• Use Termination and Cancellation to end a Workflow Execution

• Implement the Saga pattern to restore external state following failure in a Workflow Execution



• We provide a development environment for you in this workshop 
• It uses GitHub Codespaces to deploy a Temporal Service, plus a code editor and terminal


• You access it through your browser (requires you to log in to GitHub)


• Your instructor will now demonstrate how to access and use it


t.mp/edu-errstrat-dotnet-code

Exercise Environment

http://t.mp/edu-errstrat-dotnet-code


Codespaces Overview

File browser 
(source code 
for exercises)

Code editor

Terminals

Terminal 
List



00.  About this Workshop


01.  Error Handling Concepts 

02.  Throwing and Handling Exceptions


03.  Timeouts


04.  Retry Policies


05.  Recovering from Failure


06.  Conclusion

Crafting an Error Handling Strategy



Failures in a Temporal Application

• Temporal guarantees Durable Execution for your Workflows 
• Ensures that they run to completion despite adverse conditions, such as process termination


• Despite running to completion, failures may still occur during Workflow Execution


• Application developers are still responsible for handling failures 
• You must identify when they occur, using clues such as errors and timeouts


• You must determine how to mitigate them, perhaps through retries or conditional logic


• Each failure belongs to one of two categories: Platform or Application



Platform Failures

• Occur for reasons outside the application’s control 
• For example, a problem with a server or network


• Platform failures generally resolve themselves after retrying 

• Classification: Is the platform capable of detecting and mitigating this?



Application Failures

• Occur due to problems in the application’s code or input data 

• Retries generally do not resolve application failures 

• Detection and mitigation require knowledge about the application 
• Example: order processing fails due to expired payment card


• No matter how many retries you perform, the card will still be expired


• Application can detect this failure based on the error code returned by payment processor


• Can mitigate by canceling the order, notifying customer, and returning items to inventory



Backward and Forward Recovery

• Application failures often involve backward recovery 
• Backward recovery: Attempt to fix problem reverting previous change(s) in state


• Example: Compensating transaction


• Platform failures often involve forward recovery 
• Forward recovery: Attempt to fix problem by continuing processing from the point of failure


• Example: Retrying a failed operation



The Temporal Error Model
• Temporal preserves errors across language and process boundaries


• Each SDK uses its own native error handling to handle errors within 
application code - Temporal converts errors to a common format


• Temporal achieves this by using protocol buffers as a message layer


• Temporal uses a custom set of protobufs to define errors, allowing for errors 
to cross process and language boundaries



Instructor-Led Demo #1
Cross-Language Error Propagation



Transient Failures

• Existence of past failure does not increase likelihood of future failures 

• These are generally one-off failures that occur by chance 
• For example, an administrator reboots a router just as you make a network request


• Resolve a transient failure by retrying the operation after a short delay




Intermittent Failures

• Existence of past failure increases likelihood of future failures 

• These are caused by a problem that eventually resolves itself 
• For example, calling a rate-limited service fails because you’ve issued too many requests


• Resolve an intermittent failure through retries, but with a longer delay 


• Using a backoff coefficient to increase delay between retries can avoid overloading the system



Permanent Failures

• Existence of past failure guarantees likelihood of future failures 

• These are caused by a problem that will never resolve itself 
• For example, sending an e-mail notification fails due to an invalid address


• Permanent failures require manual repair—you cannot resolve them through retries alone



Idempotence

• An operation is idempotent if subsequent invocations do not adversely 
change state beyond that of the initial invocation 

• Consider the idempotence of buttons used to control device power

ON

OFF

Toggle Button Separate On/Off Buttons



Activity Idempotence

• It is strongly recommended that you make your Activities idempotent 
• A non-idempotent Activity could adversely affect the state of the system


• For example, consider an Activity that performs the following steps 
1. Queries a database


2. Calls a microservice using data returned by the query


3. Writes the result of the microservice call to the filesystem


• This will be retried if any one of those steps fails 
• You should balance the granularity of your Activities with the need to keep Event History small



Idempotence and At-Least-Once Execution

• Idempotence is also important due to an edge case in distributed systems 

• Consider the following scenario 
• Worker polls the Temporal Service and accepts an Activity Task


• Worker begins executing the Activity


• Worker finishes executing the Activity


• Worker crashes just before reporting the result to the Temporal Service


• Activity will be retried since Event History does not indicate completion 
• Therefore, idempotence is essential for preventing unwanted changes in application state



Idempotency Keys

• You can achieve idempotency by ignoring duplicate requests 
• This raises a question: How can one distinguish a duplicate request from one that looks similar?


• Idempotency keys are unique identifiers associated with a request 
• They are interpreted by the system receiving the request (e.g., a payment processor)


• In a Temporal Activity, you can compose one from a Workflow Run ID and Activity ID 


• Guaranteed to be consistent across retry attempts, but unique among Workflow Executions

var handle = client.GetWorkflowHandle("my-workflow-id");
var workflow_description = await handle.DescribeAsync();
string runId = workflow_description.RunId;



How Temporal Represents Failures (1)

• All failures in Temporal are represented in the API as a Temporal Failure 
• TemporalException is the C# base class that Temporal Failures extend


• You should not extend the TemporalException class or any of its children 
• Consistency in error handling


• Compatibility with the Temporal Service


• Serialization/deserialization



How Temporal Represents Failures (2)

• An exception thrown by an Activity is surfaced as an 
ActivityFailureException 
• You can catch and handle it in your Workflow Definition, if desired


• You can use custom exception types meaningful to your application 
• For example, InvalidCreditCardException or UserNotFoundException



Examples of Temporal Failure Types
TemporalException Base class, which represents failures that    


can cross Workflow and Activity boundaries

The only failure that should be thrown by user code.  
Used to communicate application-specific failure

Indicates that an Activity failed to complete as expected

Indicates that the operation was canceled

Indicates that the operation was terminated

Indicates a failure originating in the Temporal Service

Indicates that the Activity did not complete within its 
configured Timeout period

ApplicationFailureException

ActivityFailureException

CanceledFailureException

TerminatedFailureException

ServerFailureException

TimeoutFailureException



Failure Converter

• Temporal invokes a Failure Converter when an exception is thrown 

• You can encrypt sensitive information and stack trace by using a custom 
codec.



Workflow Task vs. Workflow Execution

• Before we continues, let’s review two important terms with similar names 

• Workflow Execution 
• The sequence of steps that result from executing a Workflow Definition


• Workflow Task 
• Drives progress for a specific portion of the Workflow Execution

Activity Task Workflow TaskWorkflow Task

A Workflow Execution may span multiple Workflow Tasks



Workflow Task Failures

• You can throw an exception from your Workflow Definition 
• What happens will depend on the exception’s type


• If it does not extend TemporalException, the Workflow Task fails 
• This may occur due to a bug in your code that’s unrelated to Temporal


• For example, an ArrayIndexOutOfBoundsException


• May also occur for reasons specific to Temporal, such as a non-deterministic error


• When a Workflow Task fails, it is retried automatically



When a Workflow Task Failure Is Retried…

• Worker that handled the Task evicts that Workflow Execution from cache 
• This is a safety mechanism, since it’s considered to be in an unknown state


• The Temporal Service schedules a new Workflow Task


• Worker that picks up the new Task must recreate state before continuing 
• It first downloads the Event History from the Temporal Service


• It then uses History Replay to reconstruct the previous state of the execution


• Execution continues once this is complete



Workflow Execution Failures

• If Workflow code throws an exception that derives from 
TemporalException, the Workflow Execution will fail 
• Unlike with a Workflow Task failure, there is no automatic retry


• Remember that ApplicationFailureException extends 
TemporalException 
• Developers may intentionally throw ApplicationFailureException from a Workflow 

Definition 


• This will cause the Workflow Execution to close with a status of Failed



Activity Execution: Sequence of Events (1)



Activity Execution: Sequence of Events (2)

ActivityTaskCompleted

ActivityTaskStarted

ActivityTaskScheduled1

2

3

Temporal Service adds the Activity Task to the Task Queue

Worker accepts the Activity Task; it’s removed from the Task Queue

Worker reports result of Activity Execution to the Temporal Service

 Event Type Order  Event Description



• ActivityTaskScheduled  
is the most recent Event 
visible for a running Activity 
• You might have expected the 
ActivityTaskStarted Event


• The ActivityTaskStarted 
Event is not written until the  
Activity Execution closes 

Viewing an Activity Execution (1)



• The ActivityTaskStarted Event contains the retry attempt count

Viewing an Activity Execution (2)



• The Web UI’s “Pending Activities” section details ongoing retry attempts 
• This is visible during Activity Execution—use it to check if your Activity is failing (and why)

Viewing an Activity Execution (3)



• The ActivityTaskFailed Event provides details after the fact

Viewing an Activity Execution (4)



• The ActivityTaskCompleted Event includes the result of execution

Viewing an Activity Execution (5)



Events Related to Activity Execution

ActivityTaskCanceledRequestedActivityTaskCompleted ActivityTaskFailed ActivityTaskTimedOut

ActivityTaskStarted

ActivityTaskScheduled

ActivityTaskCanceled



Workflow Execution Failure
• An Activity failure will never directly cause a Workflow Execution failure



Error Handling Concepts Summary (1)

• You can categorize failures are either platform or application 
• Platform: occur from reasons beyond the control of your application code


• Application: caused by problems with application code or input data


• Determine which by considering if detecting and fixing requires knowledge of the application


• You can also classify them according to likelihood of reoccurrence 
• Transient: Not likely to happen again (handle by retrying with a short delay)


• Intermittent: Likely to happen again (handle by retrying with a longer and increasing delay)


• Permanent: Guaranteed to happen again (handling these will require manual intervention)



Error Handling Concepts Summary (2)

• Idempotency is a general concern for distributed systems 
• This is a concern for Activities in Temporal, since they may be executed multiple times


• Temporal strongly recommends that you ensure you Activities are idempotent


• In the .NET SDK, all failures descend from TemporalException 
• You should not extend this class nor any of its subclasses 


• ApplicationFailureException is the only one that developers should throw


• What happens when you throw an exception from your Workflow code depends on its type


• If derived from TemporalException, Workflow Execution fails; if not, Workflow Task fails



00.  About this Workshop


01.  Error Handling Concepts


02.  Throwing and Handling Exceptions 

03.  Timeouts


04.  Retry Policies


05.  Recovering from Failure


06.  Conclusion

Crafting an Error Handling Strategy



Throwing Exceptions from Activities (1)
• Use Application Failures to communicate application-specific failures 

• From both Workflows and Activities


• Throwing an ApplicationFailureException from an Activity causes 
it to fail



Throwing Exceptions from Activities (1)
• Use Application Failures to communicate application-specific failures 

• From both Workflows and Activities


• Throwing an ApplicationFailureException from an Activity causes 
it to fail 
• This will be represented as ActivityTaskFailed in the Event History


• The Event will include the error message specified in the ApplicationFailureException

if (creditCardNumber.Length != 16) 
{ 
    throw new ApplicationFailureException("Invalid credit card number: must contain 
exactly 16 digits", 
    details: new[] { creditCardNumber }, 
    errorType: "InvalidCreditCardErr"); 
} 



Throwing Exceptions from Activities (2)
• This is how that exception appears in the Event History 

• The ActivityTaskFailed Event contains details of the failure



Throwing Exceptions from Activities (3)
• Exception thrown from Activity is converted to 
ApplicationFailureException 
• This is then wrapped in an ActivityFailureException


• This wrapper provides some context, such as  
• Activity Type


• Retry Attempts


• Cause


• An Activity failure will never directly cause a Workflow Execution Failure



• Recall that permanent errors require manual intervention 
• Will continue to fail regardless of how many times you retry payment


• Specify these as non-retryable so you can fix them manually

Non-Retryable Errors for Activities



• Recall that permanent errors require manual intervention 
• Will continue to fail regardless of how many times you retry payment


• Specify these as non-retryable so you can fix them manually 

• It is also possible to specify non-retryable types in the Retry Policy

Non-Retryable Errors for Activities

var attempt = ActivityExecutionContext.Current.Info.Attempt;
throw new ApplicationFailureException(
    $"Something bad happened on attempt {attempt}",
    errorType: "my_failure_type",
    nonRetryable: true);



Throwing Exceptions from Workflows (1)
• Throwing most exceptions from a Workflow cause Workflow Task to fail 

• Workflow Tasks are automatically retried, although this results in History Replay


• Throwing ApplicationFailureException fails a Workflow Execution 
• ApplicationFailureException is the only subclass of TemporalFailure you should throw


• This causes the Workflow Execution to close with a status of Failed

throw new ApplicationFailureException(
    $"Something bad happened",
    errorType: "my_failure_type");



Throwing Exceptions from Workflows (2)
• This is how that exception appears in the Event History 

• The WorkflowExecutionFailed Event contains details of the failure



Handling Problems in the Workflow

• Subclasses of TemporalException may be visible to your Workflow code 
• For example, ApplicationFailureException or ActivityFailureException


• Allowing these to propagate will result in Workflow Execution failure 
• You therefore need to catch and handle them



Exercise #1: Handling Errors

• During this exercise, you will 
• Throw and handle exceptions in Temporal Workflows and Activities


• Use non-retryable errors to fail an Activity


• Locate the details of a failure in Temporal Workflows and Activities in the Event History


• Refer to the README.md file in the exercise environment for details 
• The code is below the exercises/handling-errors


• Make your changes to the code in the practice subdirectory (look for TODO comments)


• If you need a hint or want to verify your changes, look at the complete version in the solution subdirectory

t.mp/edu-errstrat-dotnet-code

http://t.mp/edu-errstrat-dotnet-code


Throwing and Handling Exceptions Summary

• Throwing ApplicationFailureException from an Activity fails it 
• The ActivityTaskFailed in Event History includes details of the failure 

• Will retry according to policy, but the developer can force it to be non-retryable if desired


• What happens when you throw an exception from a Workflow? 
• It depends on whether that exception derives from TemporalException


• If it does, then the Workflow Execution will fail


• If it does not, then the current Workflow Task will fail (and will be retried)



00.  About this Workshop


01.  Error Handling Concepts


02.  Throwing and Handling Exceptions


03.  Timeouts 

04.  Retry Policies


05.  Recovering from Failure


06.  Conclusion

Crafting an Error Handling Strategy



What are Timeouts?
• A predefined duration provided for an operation to complete


• Temporal uses timeouts for two primary reasons:


• Detect failure


• Establish a maximum time duration for your business logic



Activity Timeouts
• Controls the maximum duration of a different aspect of an Activity Execution


• A measure of the time it takes to transition between one state to another 


• Specified as an argument on the call to ExecuteActivityAsync

var options = new ActivityOptions 
  { 
      StartToCloseTimeout = TimeSpan.FromSeconds(5), 
      RetryPolicy = new() 
      { 
          MaximumInterval = TimeSpan.FromSeconds(10), 
      }, 
  }; 



Activity Timeouts
• Controls the maximum duration of a different aspect of an Activity Execution


• A measure of the time it takes to transition between one state to another 


• Specified as an argument on the call to ExecuteActivityAsync 

• As with an Activity that fails, an Activity that times out will be retried


• Based on details specified in the Retry Policy



Review of Activity Task States

ActivityTaskCompleted

ActivityTaskStarted

ActivityTaskScheduled1

2

3

Temporal Service adds the Activity Task to the Task Queue

Worker accepts the Activity Task; it’s removed from the Task Queue)

Worker reports result of Activity Execution to the Temporal Service

 Event Type Order  Event Description

(One of many closed states)



Understanding Activity Timeout Names

ActivityTaskScheduled

ActivityTaskCompleted ActivityTaskFailed ActivityTaskTimedOutActivityTaskCanceled

ActivityTaskStarted

Schedule-to-C
lose Tim

eout

Schedule-to-Start Timeout

Start-to-Close Timeout



Start-to-Close Timeout

• Limits maximum time allowed for a single Activity Task Execution 
• Time is reset for each retry attempt, since that will take place in a new Activity Task


• Recommended: Set duration slightly longer than maximum time you expect the Activity will take

return await Workflow.ExecuteActivityAsync(
    (MyActivities a) => a.MyActivity(param),
    new() { StartToCloseTimeout = TimeSpan.FromMinutes(5) });

ActivityTaskScheduled

ActivityTaskCompleted

ActivityTaskStarted
Start-to-

Close  
Timeout



• Limits maximum time allowed for entire Activity Execution 
• Because it includes all retries, it is typically less predictable than a Start-to-Close Timeout

Schedule-to-Close Timeout

ActivityTaskScheduled

ActivityTaskCompleted

ActivityTaskStarted
Schedule-
to-Close  
Timeout

return await Workflow.ExecuteActivityAsync(
    (MyActivities a) => a.MyActivity(param),
    new() { ScheduleToCloseTimeout = TimeSpan.FromMinutes(5) });



Schedule-to-Start Timeout

• Limits maximum time allowed for Activity Task to remain in Task Queue 
• Ensures the Activity is started within a specified time frame, though it’s seldom recommended


• If set, it is done in addition to a Start-to-Close or Schedule-to-Close Timeout

Schedule-
to-Start  
Timeout

ActivityTaskScheduled

ActivityTaskCompleted

ActivityTaskStarted

return await Workflow.ExecuteActivityAsync(
    (MyActivities a) => a.MyActivity(param),
    new() { ScheduleToStartTimeout = TimeSpan.FromMinutes(5) });



Activity Timeout Best Practices

• You are required to set a Schedule-to-Close or Start-to-Close Timeout 
• It can be difficult to predict how long execution might take when retries are involved


• Therefore, setting Start-to-Close is usually the better choice


• Retry Policies allow you to specify a maximum number of retry attempts 
• However, using Timeouts to limit the duration is typically more useful


• Business logic tends to be concerned with how long something takes (for example, SLAs)



Workflow Execution Timeout
• Restricts the maximum amount of time that a single Workflow Execution can 

be executed, including retries and any usage of Continue-As-New


• Default is infinite

var result = await client.ExecuteWorkflowAsync(
    (MyWorkflow wf) => wf.RunAsync(),
    new(id: "my-workflow-id", taskQueue: "my-task-queue")
    {
        WorkflowExecutionTimeout = TimeSpan.FromMinutes(5),
    });



Workflow Run Timeout
• A Workflow Run is the instance of a specific Workflow Execution


• Restricts the maximum duration of a single Workflow Run


• This does not include retries or Continue-As-New


• Default is infinite

var result = await client.ExecuteWorkflowAsync(
    (MyWorkflow wf) => wf.RunAsync(),
    new(id: "my-workflow-id", taskQueue: "my-task-queue")
    {
        WorkflowRunTimeout = TimeSpan.FromMinutes(5),
    });



Best Practices
• We generally do not recommend setting Workflow Timeouts


• If you need to perform an action inside your Workflow after a specific period 
time, we recommend using a Timer



Activity Heartbeats
• A periodic message sent by the Activity to the Temporal Service that serves 

multiple purposes:


• Progress indication


• Worker Health Check


• Cancellation Detection



How to Send a Heartbeat Message
public static async Task FakeProgressAsync(int sleepIntervalMs = 1000) 
{ 
    // Allow for resuming from heartbeat 
    var startingPoint = ActivityExecutionContext.Current.Info.HeartbeatDetails.Count > 0  
        ? await ActivityExecutionContext.Current.Info.HeartbeatDetailAtAsync<int>(0) 
        : 1; 

    ActivityExecutionContext.Current.Logger.LogInformation("Starting activity at 
progress: {StartingPoint}", startingPoint); 

    for (var progress = startingPoint; progress <= 100; ++progress) 
    { 
        await Task.Delay(sleepIntervalMs, 
ActivityExecutionContext.Current.CancellationToken); 
        ActivityExecutionContext.Current.Logger.LogInformation("Progress: {Progress}", 
progress); 
        ActivityExecutionContext.Current.Heartbeat(progress); 
    } 
} 



How to Send a Heartbeat Message
public static async Task FakeProgressAsync(int sleepIntervalMs = 1000) 
{ 
    // Allow for resuming from heartbeat 
    var startingPoint = ActivityExecutionContext.Current.Info.HeartbeatDetails.Count > 0  
        ? await ActivityExecutionContext.Current.Info.HeartbeatDetailAtAsync<int>(0) 
        : 1; 

    ActivityExecutionContext.Current.Logger.LogInformation("Starting activity at 
progress: {StartingPoint}", startingPoint); 

    for (var progress = startingPoint; progress <= 100; ++progress) 
    { 
        await Task.Delay(sleepIntervalMs, 
ActivityExecutionContext.Current.CancellationToken); 
        ActivityExecutionContext.Current.Logger.LogInformation("Progress: {Progress}", 
progress); 
        ActivityExecutionContext.Current.Heartbeat(progress); 
    } 
} 



How to Send a Heartbeat Message
public static async Task FakeProgressAsync(int sleepIntervalMs = 1000) 
{ 
    // Allow for resuming from heartbeat 
    var startingPoint = ActivityExecutionContext.Current.Info.HeartbeatDetails.Count > 0  
        ? await ActivityExecutionContext.Current.Info.HeartbeatDetailAtAsync<int>(0) 
        : 1; 

    ActivityExecutionContext.Current.Logger.LogInformation("Starting activity at 
progress: {StartingPoint}", startingPoint); 

    for (var progress = startingPoint; progress <= 100; ++progress) 
    { 
        await Task.Delay(sleepIntervalMs, 
ActivityExecutionContext.Current.CancellationToken); 
        ActivityExecutionContext.Current.Logger.LogInformation("Progress: {Progress}", 
progress); 
        ActivityExecutionContext.Current.Heartbeat(progress); 
    } 
} 



How to Send a Heartbeat Message
public static async Task FakeProgressAsync(int sleepIntervalMs = 1000) 
{ 
    // Allow for resuming from heartbeat 
    var startingPoint = ActivityExecutionContext.Current.Info.HeartbeatDetails.Count > 0  
        ? await ActivityExecutionContext.Current.Info.HeartbeatDetailAtAsync<int>(0) 
        : 1; 

    ActivityExecutionContext.Current.Logger.LogInformation("Starting activity at 
progress: {StartingPoint}", startingPoint); 

    for (var progress = startingPoint; progress <= 100; ++progress) 
    { 
        await Task.Delay(sleepIntervalMs, 
ActivityExecutionContext.Current.CancellationToken); 
        ActivityExecutionContext.Current.Logger.LogInformation("Progress: {Progress}", 
progress); 
        ActivityExecutionContext.Current.Heartbeat(progress); 
    } 
} 



Heartbeats and Cancellations
• For an Activity to be cancellable, it must perform Heartbeating


• If you need to cancel a long-running Activity Execution, make sure it is 
configured to send Heartbeats periodically



Heartbeat Timeout
• The maximum time allowed between Activity Heartbeats



Heartbeat Timeout
• The maximum time allowed between Activity Heartbeats


• The Heartbeat Timeout must be set in order for Temporal to track the 
Heartbeats sent by the Activity

await Workflow.ExecuteActivityAsync(
    (MyActivities a) => a.MyActivity(param),
    new()
    {
        StartToCloseTimeout = TimeSpan.FromMinutes(5),
        HeartbeatTimeout = TimeSpan.FromSeconds(30),
    });



Heartbeat Timeout
• To ensure efficient, handling of long-running Activities:


• Set your Start-to-Close Timeout to be slightly longer than the maximum 
duration of your Activity


• Your Heartbeat Timeout should be fairly short


• When the Heartbeat Timeout is specified, the Activity must send Heartbeats 
at intervals shorter than the Heartbeat Timeout



Heartbeat Throttling
• Heartbeats may be throttled by the Worker


• Throttling allows the Worker to reduce network traffic and load on the 
Temporal Service 


• Throttling does not apply to the final Heartbeat message in the case of 
Activity Failure



Timeouts Summary

• Timeouts define the expected duration for an operation to complete 
• They allow your application to remain responsive and enable Temporal to detect failure


• You can set different Timeouts for each Activity Execution in a Workflow


• You are required to set a Schedule-to-Close or Start-to-Close Timeout 
• We recommend setting Start-to-Close Timeout in most cases


• We do not recommend setting a Workflow Timeout


• Activity Heartbeats improve failure detection 
• Recommended for long-running Activities

Schedule-
to-Start  
Timeout

Start-to-
Close 

Timeout

ActivityTaskScheduled

ActivityTaskCompleted

ActivityTaskStarted
Schedule-
to-Close  
Timeout



00.  About this Workshop


01.  Error Handling Concepts


02.  Throwing and Handling Exceptions


03.  Timeouts


04.  Retry Policies 

05.  Recovering from Failure


06.  Conclusion

Crafting an Error Handling Strategy



Retry Policies

• By default, Temporal automatically retries an Activity that fails 
• A Retry Policy defines the details of how those retries are carried out


• Unlike Activities, Workflow Executions are not retried by default 
• While failed Workflow Executions are not retried automatically, failed Workflow Tasks are


• Workflow Tasks retry automatically and indefinitely



Default Retry Policies
• Activities in Temporal are associated with a Retry Policy by default, Workflows 

are not



Retry Policy for Activities
• Default is to retry, with a short delay between each attempt



Retry Policy for Activities

Method Specifies Default Value

InitialInterval Duration before the first retry 1 second

BackoffCoefficient Multiplier used for subsequent retries 2.0

MaximumInterval Maximum duration between retries, in seconds 100 * InitialInterval

MaximumAttempts Maximum number of retry attempts before giving up 0 (unlimited)

NonRetryableErrorTypes List of application failure types that won’t be retried [] (empty list)

• Customize RetryPolicy by creating a RetryPolicy

var retryPolicy = new RetryPolicy{
BackoffCoefficient = 2.0,
MaximumAttempts = 500

};



Retry Policy for Workflow Executions
• Workflow Executions do not retry by default


• We do not recommend associating a Retry Policy with your Workflow 
Execution



Custom Retry Policy for Activity Execution
• Transient failure: Resolved by retrying the operation immediately after the 

failure


• Intermittent failure: Addressed by retrying the operation, but these retries 
should be spread out over a longer period of time to allow underlying cause 
to be resolved


• Permanent failure: Cannot be resolved solely through retries, needs manual 
intervention



Custom Retry Policy for Activity Execution
var options = new ActivityOptions 
{ 
    StartToCloseTimeout = TimeSpan.FromSeconds(60), 
    HeartbeatTimeout = TimeSpan.FromSeconds(30), 
    RetryPolicy = new() 
    { 
        InitialInterval = TimeSpan.FromSeconds(1), 
        BackoffCoefficient = 1, 
        MaximumInterval = TimeSpan.FromSeconds(1), 
        MaximumAttempts = 5, 
        NonRetryableErrorTypes = new[] 
{ "InvalidCreditCardErr" }, 
    }, 
}; 

await Workflow.ExecuteActivityAsync((Activities act) => 
act.ValidateCreditCardAsync(customer),options); 



Common Use Cases for Defining a Custom Retry Policy

• Making calls to a service experiencing heavy load


• If an external service implements rate limiting


• A service charges for each call received



Best Practices for Retry Policies
• Don’t unnecessarily set maximum attempts to 1


• Recognize that each Activity Execution can have its own retry policy


• Avoid retry policies for Workflow Executions



Customizing a Retry Policy for a Specific Activity

• You can use the RetryPolicy for each different Activity Execution


• You can also customize a Retry Policy if an Activity is invoked conditionally



Defining Errors as Non-Retryable

if (creditCardNumber.Length != 16) 
{ 
    throw new ApplicationFailureException("Invalid credit a number: must 
contain exactly 16 digits", 
    details: new[] { creditCardNumber }, errorType: 
"InvalidCreditCardErr"); 
} 



Defining Errors as Non-Retryable
• Non-retryable errors are specified in the list of non-retryable errors

var options = new ActivityOptions 
{ 
    StartToCloseTimeout = TimeSpan.FromSeconds(60), 
    HeartbeatTimeout = TimeSpan.FromSeconds(30), 
    RetryPolicy = new() 
    { 
        InitialInterval = TimeSpan.FromSeconds(1), 
        BackoffCoefficient = 1, 
        MaximumInterval = TimeSpan.FromSeconds(1), 
        MaximumAttempts = 5, 
        NonRetryableErrorTypes = new[] { "InvalidCreditCardErr" }, 
    }, 
}; 

await Workflow.ExecuteActivityAsync((Activities act) => 
act.ValidateCreditCardAsync(customer),options); 



Defining Errors as Non-Retryable
• Non-retryable errors are specified in the list of non-retryable errors


• By default, this is an empty list


• Non-retryable errors should be used when the implementor of the Activity 
knows that the failure is unrecoverable 



Exercise #2: Non-Retryable Error Types

• During this exercise, you will 
• Configure non-retry able error types for Activities


• Implement customized retry policies for Activities


• Add Heartbeats and Heartbeat timeouts to help users monitor the health of Activities


• Refer to the README.md file in the exercise environment for details 
• The code is below the exercises/non-retryable-error-types


• Make your changes to the code in the practice subdirectory (look for TODO comments)


• If you need a hint or want to verify your changes, look at the complete version in the solution subdirectory

t.mp/edu-errstrat-dotnet-code

http://t.mp/edu-errstrat-dotnet-code


Retry Policies Summary (1)

• Workflow Executions have the benefit of Durable Execution 
• They must be deterministic, so they rely on Activities to perform failure-prone operations


• Activities that fail are automatically retried, based on a Retry Policy 
• Workflow Executions are not retried by default and it’s uncommon to configure that behavior


• By default, the Activity is re-attempted one second after failure 
• Delay doubles before each subsequent attempt until reaching maximum of 100 seconds


• Retries continue until the Activity completes, is canceled, or Workflow Execution ends


• Provides a reasonable balance for addressing both transient and intermittent failures



Retry Policies Summary (2)

• This Retry Policy is customizable 
• You may wish to increase the delay or backoff coefficient for a specific intermittent failure


• Every Activity Execution in a Workflow can specific a different Retry Policy


• Use care when specifying maximum attempts in a Retry Policy 
• Setting this to 1 may have unintended consequences


• It’s often better to use an Activity Timeout to place a limit on Activity Execution


• You can also designate a particular type of error as non-retryable



00.  About this Workshop


01.  Error Handling Concepts


02.  Throwing and Handling Exceptions


03.  Timeouts


04.  Retry Policies


05.  Recovering from Failure 

06.  Conclusion

Crafting an Error Handling Strategy



Handling a Workflow Execution that Cannot Complete

• Canceling your Workflow Execution



Canceling a Workflow Execution



Canceling a Workflow Execution



Canceling a Workflow Execution



Canceling a Workflow Execution from the CLI
temporal workflow cancel --workflow-id=meaningful-business-id

• Records a WorkflowExecutionCancelRequested Event in Event 
History


• A new Workflow Task will be scheduled, and the Workflow Execution 
performs cleanup work



Canceling a Workflow Execution with the SDK
• You need to use WorkflowHandle method to get a reference to the 

Workflow


• You will get the most recent run

var handle = myClient.GetWorkflowHandle("my-workflow-id"); 

await handle.CancelAsync(); 



Handling a Workflow Execution that Cannot Complete

• Canceling your Workflow Execution


• Terminating your Workflow Execution



Handling a Workflow Execution that Cannot Complete

• Canceling your Workflow Execution


• Terminating your Workflow Execution


• Resetting your Workflow Execution



Rollback Actions and the Saga Pattern
• A saga is a pattern used in distributed systems to manage a sequence of 

local transactions



Rollback Actions and the Saga Pattern
• A saga is a pattern used in distributed systems to manage a sequence of 

local transactions

103

Receive car 
rental request Reserve car Process 

payment Prepare car



Rollback Actions and the Saga Pattern
• A saga is a pattern used in distributed systems to manage a sequence of 

local transactions


• If any transaction in the sequence fails, the saga executes actions to rollback 
the previous operations. This is known as a compensating action. Examples:


• Examples:


• E-Commerce Transaction


• Distributed Data Updates



Rollback Actions and the Saga Pattern



Rollback Actions and the Saga Pattern
private async Task CompensateAsync(List<Func<Task>> compensations)
{
    compensations.Reverse();
    foreach (var comp in compensations)
    {
        try
        {
            await comp.Invoke();
        }
        catch (Exception ex)
        {
            Workflow.Logger.LogError(ex, "Failed to compensate");
            // swallow errors
        }
    }
}



Rollback Actions and the Saga Pattern
[Workflow]
public class SagaWorkflow
{
    [WorkflowRun]
    public async Task RunAsync(TransferDetails transfer)
    {
        List<Func<Task>> compensations = new();

        var options = new ActivityOptions() { StartToCloseTimeout = TimeSpan.FromSeconds(90) };

        try
        {
            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.WithdrawCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Withdraw(transfer), options);

            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.DepositCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Deposit(transfer), options);

            // throw new Exception
            await Workflow.ExecuteActivityAsync(() => Activities.StepWithError(transfer), options);
        }
        catch (Exception)
        {
            await CompensateAsync(compensations);
            throw;
        }
    }
}

Xd



Rollback Actions and the Saga Pattern
[Workflow]
public class SagaWorkflow
{
    [WorkflowRun]
    public async Task RunAsync(TransferDetails transfer)
    {
        List<Func<Task>> compensations = new();

        var options = new ActivityOptions() { StartToCloseTimeout = TimeSpan.FromSeconds(90) };

        try
        {
            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.WithdrawCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Withdraw(transfer), options);

            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.DepositCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Deposit(transfer), options);

            // throw new Exception
            await Workflow.ExecuteActivityAsync(() => Activities.StepWithError(transfer), options);
        }
        catch (Exception)
        {
            await CompensateAsync(compensations);
            throw;
        }
    }
}

Xd

Xd



Rollback Actions and the Saga Pattern
[Workflow]
public class SagaWorkflow
{
    [WorkflowRun]
    public async Task RunAsync(TransferDetails transfer)
    {
        List<Func<Task>> compensations = new();

        var options = new ActivityOptions() { StartToCloseTimeout = TimeSpan.FromSeconds(90) };

        try
        {
            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.WithdrawCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Withdraw(transfer), options);

            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.DepositCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Deposit(transfer), options);

            // throw new Exception
            await Workflow.ExecuteActivityAsync(() => Activities.StepWithError(transfer), options);
        }
        catch (Exception)
        {
            await CompensateAsync(compensations);
            throw;
        }
    }
}

Xd

Xd



Rollback Actions and the Saga Pattern
[Workflow]
public class SagaWorkflow
{
    [WorkflowRun]
    public async Task RunAsync(TransferDetails transfer)
    {
        List<Func<Task>> compensations = new();

        var options = new ActivityOptions() { StartToCloseTimeout = TimeSpan.FromSeconds(90) };

        try
        {
            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.WithdrawCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Withdraw(transfer), options);

            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.DepositCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Deposit(transfer), options);

            // throw new Exception
            await Workflow.ExecuteActivityAsync(() => Activities.StepWithError(transfer), options);
        }
        catch (Exception)
        {
            await CompensateAsync(compensations);
            throw;
        }
    }
}

Xd



Rollback Actions and the Saga Pattern
[Workflow]
public class SagaWorkflow
{
    [WorkflowRun]
    public async Task RunAsync(TransferDetails transfer)
    {
        List<Func<Task>> compensations = new();

        var options = new ActivityOptions() { StartToCloseTimeout = TimeSpan.FromSeconds(90) };

        try
        {
            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.WithdrawCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Withdraw(transfer), options);

            compensations.Add(async () => await Workflow.ExecuteActivityAsync(
                () => Activities.DepositCompensation(transfer), options));
            await Workflow.ExecuteActivityAsync(() => Activities.Deposit(transfer), options);

            // throw new Exception
            await Workflow.ExecuteActivityAsync(() => Activities.StepWithError(transfer), options);
        }
        catch (Exception)
        {
            await CompensateAsync(compensations);
            throw;
        }
    }
}

Xd



Exercise #3: Implementing a Rollback Action with the Saga Pattern

• During this exercise, you will 
• Orchestrate Activities using a Saga pattern to implement compensating transactions


• Handle failures with rollback logic


• Refer to the README.md file in the exercise environment for details 
• The code is below the exercises/rollback-with-saga


• Make your changes to the code in the practice subdirectory (look for TODO comments)


• If you need a hint or want to verify your changes, look at the complete version in the solution subdirectory

t.mp/edu-errstrat-dotnet-code

http://t.mp/edu-errstrat-dotnet-code


Recovering from Failure Summary (1)

• Temporal provides a few options for recovering from persistent failure 
1. Canceling a Workflow Execution is graceful and allows for clean up before closing


2. Terminating a Workflow Execution is forceful and does not allow cleanup before closing


3. Resetting a Workflow Execution allows it to continue from a previous point in Event History 



Recovering from Failure Summary (2)

• The application may also support rolling back to a previous state 
• Often achieved with the Saga pattern


• Tracks a series of related operations, each dependent on success of the previous one


• Upon failure, it uses compensating transactions to revert changes to application state



00.  About this Workshop


01.  Error Handling Concepts


02.  Throwing and Handling Exceptions


03.  Timeouts


04.  Retry Policies


05.  Recovering from Failure


06.  Conclusion

Crafting an Error Handling Strategy



Error Handling Concepts Summary (1)

• You can categorize failures are either platform or application 
• Platform: occur from reasons beyond the control of your application code


• Application: caused by problems with application code or input data


• Determine which by considering if detecting and fixing requires knowledge of the application


• You can also classify them according to likelihood of reoccurrence 
• Transient: Not likely to happen again (handle by retrying with a short delay)


• Intermittent: Likely to happen again (handle by retrying with a longer and increasing delay)


• Permanent: Guaranteed to happen again (handling these will require manual intervention)



Error Handling Concepts Summary (2)

• Idempotency is a general concern for distributed systems 
• Will multiple invocations of your operation result in adverse changes to application state?


• This is a concern for Activities in Temporal, since they may be executed multiple times


• Temporal strongly recommends that you ensure you Activities are idempotent


• In the .NET SDK, all failures descend from TemporalFailureException 
• You should not extend this class nor any of its subclasses 


• ApplicationFailureException is the only one that developers should throw


• What happens when you throw an exception from your Workflow code depends on its type


• If derived from TemporalFailureException, Workflow Execution fails



Unpublished version - TW20220829a
118

https://github.com/codespaces

Don’t forget to manually delete your 
code spaces

https://github.com/codespaces


Unpublished version - TW20220829a
119

We welcome your feedback

Thank you for your time and attention

t.mp/replay25ws



Share what 
youʼve built with 
Temporal
Temporal has a thriving community building 
code for each other – we'd love to see what 
you've built! 

TEMPORAL’S CODE EXCHANGE 

TEMPORAL.IO/CODE-EXCHANGE 


